#define AUTO_GAIN 1 // автонастройка по громкости (экспериментальная функция)
#define VOL_THR 15 // порог тишины (ниже него отображения на матрице не будет)
#define LOW_PASS 10 // нижний порог чувствительности шумов (нет скачков при отсутствии звука)
#define DEF_GAIN 50 // максимальный порог по умолчанию (при GAIN_CONTROL игнорируется)
#define FHT_N 128 // ширина спектра х2
#define LOG_OUT 1
#define BRIG 5 // ЯРКОСТЬ ИНДИК. 1-10 1=MAX
#define STEP 2000 // ПЛАВНОСТЬ ХОДА ИНД. 1-5000
byte posOffset[12] = {2, 3, 5, 7, 10, 13, 17, 21, 25, 30, 37, 45};
//byte anod[]={16,17,18,19,20,21,22,23,31,30};
byte anod[]={30,31,23,22,21,20,19,18,17,16};
byte katod[]={15,14,13,12,11,10,9,8,7,6,5,4};
int timer_i,kt;
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
#include <FHT.h> // http://forum.rcl-radio.ru/misc.php?action=pan_download&item=297&download=1
byte gain = DEF_GAIN;
unsigned long gainTimer,times;
byte maxValue, maxValue_f;
float k = 0.1;
byte ur[12],urr[12];
void setup(){
delay(100);
sbi(ADCSRA, ADPS2);
cbi(ADCSRA, ADPS1);
sbi(ADCSRA, ADPS0);
cli();
TCCR2=0;
OCR2 = 20;
TCCR2 |= (1 << WGM21);
TCCR2 |= (1 << CS22) | (1 << CS21)| (1 << CS20);
TIMSK |= (1 << OCIE2);
sei();
for(int i=0;i<10;i++){pinMode(anod[i],OUTPUT);}
for(int i=0;i<12;i++){pinMode(katod[i],OUTPUT);}
analogReference(INTERNAL);
pinMode(A0,INPUT); // INPUT AUDIO
}
void loop(){
analyzeAudio();
for (int pos = 0; pos < 12; pos++) {
int posLevel = map(fht_log_out[posOffset[pos]], LOW_PASS, gain*0.5, 0, 9);
posLevel = constrain(posLevel, 0, 9);
urr[pos] = posLevel;
if(urr[pos]<ur[pos]){ur[pos]=ur[pos]-1;}
else{ur[pos] = posLevel;}
delayMicroseconds(STEP);
}
if (AUTO_GAIN) {
maxValue_f = maxValue * k + maxValue_f * (1 - k);
if (millis() - gainTimer > 1500) { // каждые 1500 мс
// если максимальное значение больше порога, взять его как максимум для отображения
if (maxValue_f > VOL_THR) gain = maxValue_f;
// если нет, то взять порог побольше, чтобы шумы вообще не проходили
else gain = 100;
gainTimer = millis();
}
}
}
ISR(TIMER2_COMP_vect){
switch(timer_i){
case 0: cl();kat();an();break;
case 1: cl();kat();an();break;
case 2: cl();kat();an();break;
case 3: cl();kat();an();break;
case 4: cl();kat();an();break;
case 5: cl();kat();an();break;
case 6: cl();kat();an();break;
case 7: cl();kat();an();break;
case 8: cl();kat();an();break;
case 9: cl();kat();an();break;
case 10: cl();kat();an();break;
case 11: cl();kat();an();break;
}
timer_i++;
if(timer_i>11){timer_i=0;}}
void an(){
switch(ur[timer_i]){
case 0:ch(anod[0],1);ch(anod[1],0);ch(anod[2],0);ch(anod[3],0);ch(anod[4],0);ch(anod[5],0);ch(anod[6],0);ch(anod[7],0);ch(anod[8],0);ch(anod[9],0);break;
case 1:ch(anod[0],1);ch(anod[1],1);ch(anod[2],0);ch(anod[3],0);ch(anod[4],0);ch(anod[5],0);ch(anod[6],0);ch(anod[7],0);ch(anod[8],0);ch(anod[9],0);break;
case 2:ch(anod[0],1);ch(anod[1],1);ch(anod[2],1);ch(anod[3],0);ch(anod[4],0);ch(anod[5],0);ch(anod[6],0);ch(anod[7],0);ch(anod[8],0);ch(anod[9],0);break;
case 3:ch(anod[0],1);ch(anod[1],1);ch(anod[2],1);ch(anod[3],1);ch(anod[4],0);ch(anod[5],0);ch(anod[6],0);ch(anod[7],0);ch(anod[8],0);ch(anod[9],0);break;
case 4:ch(anod[0],1);ch(anod[1],1);ch(anod[2],1);ch(anod[3],1);ch(anod[4],1);ch(anod[5],0);ch(anod[6],0);ch(anod[7],0);ch(anod[8],0);ch(anod[9],0);break;
case 5:ch(anod[0],1);ch(anod[1],1);ch(anod[2],1);ch(anod[3],1);ch(anod[4],1);ch(anod[5],1);ch(anod[6],0);ch(anod[7],0);ch(anod[8],0);ch(anod[9],0);break;
case 6:ch(anod[0],1);ch(anod[1],1);ch(anod[2],1);ch(anod[3],1);ch(anod[4],1);ch(anod[5],1);ch(anod[6],1);ch(anod[7],0);ch(anod[8],0);ch(anod[9],0);break;
case 7:ch(anod[0],1);ch(anod[1],1);ch(anod[2],1);ch(anod[3],1);ch(anod[4],1);ch(anod[5],1);ch(anod[6],1);ch(anod[7],1);ch(anod[8],0);ch(anod[9],0);break;
case 8:ch(anod[0],1);ch(anod[1],1);ch(anod[2],1);ch(anod[3],1);ch(anod[4],1);ch(anod[5],1);ch(anod[6],1);ch(anod[7],1);ch(anod[8],1);ch(anod[9],0);break;
case 9:ch(anod[0],1);ch(anod[1],1);ch(anod[2],1);ch(anod[3],1);ch(anod[4],1);ch(anod[5],1);ch(anod[6],1);ch(anod[7],1);ch(anod[8],1);ch(anod[9],1);break;
}
}
void kat(){
switch(timer_i){
case 0:ch(15,1);ch(14,0);ch(13,0);ch(12,0);ch(11,0);ch(10,0);ch(9,0);ch(8,0);ch(7,0);ch(6,0);ch(5,0);ch(4,0);break;
case 1:ch(15,0);ch(14,1);ch(13,0);ch(12,0);ch(11,0);ch(10,0);ch(9,0);ch(8,0);ch(7,0);ch(6,0);ch(5,0);ch(4,0);break;
case 2:ch(15,0);ch(14,0);ch(13,1);ch(12,0);ch(11,0);ch(10,0);ch(9,0);ch(8,0);ch(7,0);ch(6,0);ch(5,0);ch(4,0);break;
case 3:ch(15,0);ch(14,0);ch(13,0);ch(12,1);ch(11,0);ch(10,0);ch(9,0);ch(8,0);ch(7,0);ch(6,0);ch(5,0);ch(4,0);break;
case 4:ch(15,0);ch(14,0);ch(13,0);ch(12,0);ch(11,1);ch(10,0);ch(9,0);ch(8,0);ch(7,0);ch(6,0);ch(5,0);ch(4,0);break;
case 5:ch(15,0);ch(14,0);ch(13,0);ch(12,0);ch(11,0);ch(10,1);ch(9,0);ch(8,0);ch(7,0);ch(6,0);ch(5,0);ch(4,0);break;
case 6:ch(15,0);ch(14,0);ch(13,0);ch(12,0);ch(11,0);ch(10,0);ch(9,1);ch(8,0);ch(7,0);ch(6,0);ch(5,0);ch(4,0);break;
case 7:ch(15,0);ch(14,0);ch(13,0);ch(12,0);ch(11,0);ch(10,0);ch(9,0);ch(8,1);ch(7,0);ch(6,0);ch(5,0);ch(4,0);break;
case 8:ch(15,0);ch(14,0);ch(13,0);ch(12,0);ch(11,0);ch(10,0);ch(9,0);ch(8,0);ch(7,1);ch(6,0);ch(5,0);ch(4,0);break;
case 9:ch(15,0);ch(14,0);ch(13,0);ch(12,0);ch(11,0);ch(10,0);ch(9,0);ch(8,0);ch(7,0);ch(6,1);ch(5,0);ch(4,0);break;
case 10:ch(15,0);ch(14,0);ch(13,0);ch(12,0);ch(11,0);ch(10,0);ch(9,0);ch(8,0);ch(7,0);ch(6,0);ch(5,1);ch(4,0);break;
case 11:ch(15,0);ch(14,0);ch(13,0);ch(12,0);ch(11,0);ch(10,0);ch(9,0);ch(8,0);ch(7,0);ch(6,0);ch(5,0);ch(4,1);break;
}}
void cl(){for(int i=0;i<10;i++){ch(anod[i],0);}for(int i=0;i<12;i++){ch(katod[i],0);}delayMicroseconds(100*BRIG);}
void ch(int pin, int logic){digitalWrite(pin,logic);}
void analyzeAudio() {
for (int iu = 0 ; iu < FHT_N ; iu++) {
int sample = analogRead(A0)*2;
fht_input[iu] = sample; // put real data into bins
}
fht_window(); // window the data for better frequency response
fht_reorder(); // reorder the data before doing the fht
fht_run(); // process the data in the fht
fht_mag_log(); // take the output of the fht
}