1

Тема: кнопки

Доброе утро.
Как добавить кнопки для регулировки частоты генератора?
Сейчас делаю вручную, меняя значение - #define TIMER1_TOP (217)

// Induction balance metal detector

// We run the CPU at 16MHz and the ADC clock at 1MHz. ADC resolution is reduced to 8 bits at this speed.

// Timer 1 is used to divide the system clock by about 256 to produce a 62.5kHz square wave. 
// This is used to drive timer 0 and also to trigger ADC conversions.
// Timer 0 is used to divide the output of timer 1 by 8, giving a 7.8125kHz signal for driving the transmit coil.
// This gives us 16 ADC clock cycles for each ADC conversion (it actually takes 13.5 cycles), and we take 8 samples per cycle of the coil drive voltage.
// The ADC implements four phase-sensitive detectors at 45 degree intervals. Using 4 instead of just 2 allows us to cancel the third harmonic of the
// coil frequency.

// Timer 2 will be used to generate a tone for the earpiece or headset.

// Other division ratios for timer 1 are possible, from about 235 upwards.

// Wiring:
// Connect digital pin 4 (alias T0) to digital pin 9
// Connect digital pin 5 through resistor to primary coil and tuning capacitor
// Connect output from receive amplifier to analog pin 0. Output of receive amplifier should be biased to about half of the analog reference.
// When using USB power, change analog reference to the 3.3V pin, because there is too much noise on the +5V rail to get good sensitivity.
#include <LiquidCrystal.h> 
#include <LcdBarGraph.h>
#define max_ampAverage 200
LiquidCrystal lcd(6, 7, 10, 11, 12, 13);
LcdBarGraph lbg(&lcd, 16, 0, 1); 

//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

#define TIMER1_TOP  (259)        // can adjust this to fine-tune the frequency to get the coil tuned (see above)
//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++


#define USE_3V3_AREF  (1)        // set to 1 of running on an Arduino with USB power, 0 for an embedded atmega28p with no 3.3V supply available

// Digital pin definitions
// Digital pin 0 not used, however if we are using the serial port for debugging then it's serial input
const int debugTxPin = 1;        // transmit pin reserved for debugging
const int encoderButtonPin = 2;  // encoder button, also IN0 for waking up from sleep mode
const int earpiecePin = 3;       // earpiece, aka OCR2B for tone generation
const int T0InputPin = 4;
const int coilDrivePin = 5;
const int LcdRsPin = 6;
const int LcdEnPin = 7;
const int LcdPowerPin = 8;       // LCD power and backlight enable
const int T0OutputPin = 9;
const int lcdD4Pin = 10;
const int lcdD5Pin = 11;         // pins 11-13 also used for ICSP
const int LcdD6Pin = 12;
const int LcdD7Pin = 13;

// Analog pin definitions
const int receiverInputPin = 0;
const int encoderAPin = A1;
const int encoderBpin = A2;
// Analog pins 3-5 not used

// Variables used only by the ISR
int16_t bins[4];                 // bins used to accumulate ADC readings, one for each of the 4 phases
uint16_t numSamples = 0;
const uint16_t numSamplesToAverage = 1024;

// Variables used by the ISR and outside it
volatile int16_t averages[4];    // when we've accumulated enough readings in the bins, the ISR copies them to here and starts again
volatile uint32_t ticks = 0;     // system tick counter for timekeeping
volatile bool sampleReady = false;  // indicates that the averages array has been updated

// Variables used only outside the ISR
int16_t calib[4];                // values (set during calibration) that we subtract from the averages

volatile uint8_t lastctr;
volatile uint16_t misses = 0;    // this counts how many times the ISR has been executed too late. Should remain at zero if everything is working properly.

const double halfRoot2 = sqrt(0.5);
const double quarterPi = 3.1415927/4.0;
const double radiansToDegrees = 180.0/3.1415927;

// The ADC sample and hold occurs 2 ADC clocks (= 32 system clocks) after the timer 1 overflow flag is set.
// This introduces a slight phase error, which we adjust for in the calculations.
const float phaseAdjust = (45.0 * 32.0)/(float)(TIMER1_TOP + 1);

float threshold = 5.0;          // lower = greater sensitivity. 10 is just about usable with a well-balanced coil.
                                 // The user will be able to adjust this via a pot or rotary encoder.

void setup()
{
  lcd.begin(16, 2);// LCD 16X2
  pinMode(encoderButtonPin, INPUT_PULLUP);  
  digitalWrite(T0OutputPin, LOW);
  pinMode(T0OutputPin, OUTPUT);       // pulse pin from timer 1 used to feed timer 0
  digitalWrite(coilDrivePin, LOW);
  pinMode(coilDrivePin, OUTPUT);      // timer 0 output, square wave to drive transmit coil
  
  cli();
  // Stop timer 0 which was set up by the Arduino core
  TCCR0B = 0;        // stop the timer
  TIMSK0 = 0;        // disable interrupt
  TIFR0 = 0x07;      // clear any pending interrupt
  
  // Set up ADC to trigger and read channel 0 on timer 1 overflow
#if USE_3V3_AREF
  ADMUX = (1 << ADLAR);                   // use AREF pin (connected to 3.3V) as voltage reference, read pin A0, left-adjust result
#else
  ADMUX = (1 << REFS0) | (1 << ADLAR);    // use Avcc as voltage reference, read pin A0, left-adjust result
#endif  
  ADCSRB = (1 << ADTS2) | (1 << ADTS1);   // auto-trigger ADC on timer/counter 1 overflow
  ADCSRA = (1 << ADEN) | (1 << ADSC) | (1 << ADATE) | (1 << ADPS2);  // enable adc, enable auto-trigger, prescaler = 16 (1MHz ADC clock)
  DIDR0 = 1;

  // Set up timer 1.
  // Prescaler = 1, phase correct PWM mode, TOP = ICR1A
  TCCR1A = (1 << COM1A1) | (1 << WGM11);
  TCCR1B = (1 << WGM12) | (1 << WGM13) | (1 << CS10);    // CTC mode, prescaler = 1
  TCCR1C = 0;
  OCR1AH = (TIMER1_TOP/2 >> 8);
  OCR1AL = (TIMER1_TOP/2 & 0xFF);
  ICR1H = (TIMER1_TOP >> 8);
  ICR1L = (TIMER1_TOP & 0xFF);
  TCNT1H = 0;
  TCNT1L = 0;
  TIFR1 = 0x07;      // clear any pending interrupt
  TIMSK1 = (1 << TOIE1);

  // Set up timer 0
  // Clock source = T0, fast PWM mode, TOP (OCR0A) = 7, PWM output on OC0B
  TCCR0A = (1 << COM0B1) | (1 << WGM01) | (1 << WGM00);
  TCCR0B = (1 << CS00) | (1 << CS01) | (1 << CS02) | (1 << WGM02);
  OCR0A = 7;
  OCR0B = 3;
  TCNT0 = 0;
  sei();
  
  while (!sampleReady) {}    // discard the first sample
  misses = 0;
  sampleReady = false;
  
  Serial.begin(19200); 
}

// Timer 0 overflow interrupt. This serves 2 purposes:
// 1. It clears the timer 0 overflow flag. If we don't do this, the ADC will not see any more Timer 0 overflows and we will not get any more conversions.
// 2. It increments the tick counter, allowing is to do timekeeping. We get 62500 ticks/second.
// We now read the ADC in the timer interrupt routine instead of having a separate comversion complete interrupt.
ISR(TIMER1_OVF_vect)
{
  ++ticks;
  uint8_t ctr = TCNT0;
  int16_t val = (int16_t)(uint16_t)ADCH;    // only need to read most significant 8 bits
  if (ctr != ((lastctr + 1) & 7))
  {
    ++misses;
  }
  lastctr = ctr;
  int16_t *p = &bins[ctr & 3];
  if (ctr < 4)
  {
    *p += (val);
    if (*p > 15000) *p = 15000;
  }
  else
  {
    *p -= val;
    if (*p < -15000) *p = -15000;
  } 
  if (ctr == 7)
  {
    ++numSamples;
    if (numSamples == numSamplesToAverage)
    {
      numSamples = 0;
      if (!sampleReady)      // if previous sample has been consumed
      {
        memcpy((void*)averages, bins, sizeof(averages));
        sampleReady = true;
      }
      memset(bins, 0, sizeof(bins));
    }
  }
}

void loop()
{
  while (!sampleReady) {}
  uint32_t oldTicks = ticks;
  
  if (digitalRead(encoderButtonPin) == LOW)
  {
    // Calibrate button pressed. We save the current phase detector outputs and subtract them from future results.
    // This lets us use the detector if the coil is slightly off-balance.
    // It would be better to everage several samples instead of taking just one.
    for (int i = 0; i < 4; ++i)
    {
      calib[i] = averages[i];
    }
    sampleReady = false;
    Serial.print("Calibrated: ");
    
    lcd.setCursor(0,0);
    lcd.print("Calibrating...  ");    
    for (int i = 0; i < 4; ++i)
    {
      Serial.write(' ');
      
      Serial.print(calib[i]);
    
    lcd.setCursor(0,1);    
    lcd.print(' ');    
    lcd.print(calib[4]); 
    lcd.print("        ");     
    }
    Serial.println();
  }
  else
  {  
    for (int i = 0; i < 4; ++i)
    {
      averages[i] -= calib[i];
    }
    const double f = 200.0;
    
    // Massage the results to eliminate sensitivity to the 3rd harmonic, and divide by 200
    double bin0 = (averages[0] + halfRoot2 * (averages[1] - averages[3]))/f;
    double bin1 = (averages[1] + halfRoot2 * (averages[0] + averages[2]))/f;
    double bin2 = (averages[2] + halfRoot2 * (averages[1] + averages[3]))/f;
    double bin3 = (averages[3] + halfRoot2 * (averages[2] - averages[0]))/f;
    sampleReady = false;          // we've finished reading the averages, so the ISR is free to overwrite them again

    double amp1 = sqrt((bin0 * bin0) + (bin2 * bin2));
    double amp2 = sqrt((bin1 * bin1) + (bin3 * bin3));
    double ampAverage = (amp1 + amp2)/2.0;
    
    // The ADC sample/hold takes place 2 clocks after the timer overflow
    double phase1 = atan2(bin0, bin2) * radiansToDegrees + 45.0;
    double phase2 = atan2(bin1, bin3) * radiansToDegrees;
  
    if (phase1 > phase2)
    {
      double temp = phase1;
      phase1 = phase2;
      phase2 = temp;
    }
    
    double phaseAverage = ((phase1 + phase2)/2.0) - phaseAdjust;
    if (phase2 - phase1 > 180.0)
    { 
      if (phaseAverage < 0.0)
      {
        phaseAverage += 180.0;
      }
      else
      {
        phaseAverage -= 180.0;
      }
    }
        
    // For diagnostic purposes, print the individual bin counts and the 2 indepedently-calculated gains and phases                                                        
    Serial.print(misses);
    Serial.write(' ');
    
    if (bin0 >= 0.0) Serial.write(' ');
    Serial.print(bin0, 2);
    Serial.write(' ');
    if (bin1 >= 0.0) Serial.write(' ');
    Serial.print(bin1, 2);
    Serial.write(' ');
    if (bin2 >= 0.0) Serial.write(' ');
    Serial.print(bin2, 2);
    Serial.write(' ');
    if (bin3 >= 0.0) Serial.write(' ');
    Serial.print(bin3, 2);
    Serial.print("    ");
    Serial.print(amp1, 2);
    Serial.write(' ');
    Serial.print(amp2, 2);
    Serial.write(' ');
    if (phase1 >= 0.0) Serial.write(' ');
    Serial.print(phase1, 2);
    Serial.write(' ');
    if (phase2 >= 0.0) Serial.write(' ');
    Serial.print(phase2, 2);
    Serial.print("    ");
    
    // Print the final amplitude and phase, which we use to decide what (if anything) we have found)
    if (ampAverage >= 0.0) Serial.write(' ');
    Serial.print(ampAverage, 1);
    Serial.write(' ');
        
        lcd.setCursor(0,0);
        lcd.print("          ");
        lcd.print(ampAverage);        
        lcd.setCursor(0,1);
        lbg.drawValue(ampAverage, max_ampAverage);

    if (phaseAverage >= 0.0) Serial.write(' ');
    Serial.print((int)phaseAverage);
    
    // Decide what we have found and tell the user
    if (ampAverage >= threshold)
    {
      // When held in line with the centre of the coil:
      // - non-ferrous metals give a negative phase shift, e.g. -90deg for thick copper or aluminium, a copper olive, -30deg for thin alumimium.
      // Ferrous metals give zero phase shift or a small positive phase shift.
      // So we'll say that anything with a phase shift below -20deg is non-ferrous.
      if (phaseAverage < -20.0)
      {
        Serial.print(" Non-ferrous");
        lcd.setCursor(0,0);        
        lcd.print("NonFerous ");      
     
      }
      else
      {
        Serial.print(" Ferrous");        
        lcd.setCursor(0,0);       
        lcd.print("Ferrous    ");                 
      }
      float temp = ampAverage;
              
       int thisPitch = map (temp, 10, 200, 100, 1500);
       tone(3, thisPitch,120);
       
      while (temp > threshold)
      {
        Serial.write('!');      
        temp -= (threshold/2);
      }
    }   
    Serial.println();
   
   }
  while (ticks - oldTicks < 8000)
  {
  }      
}